نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زبان‌شناسی همگانی، گروه زبان‌شناسی، دانشکدۀ ادبیات و علوم انسانی، دانشگاه تهران، ایران

2 استاد گروه زبان‌شناسی، دانشکدۀ ادبیات و علوم انسانی، دانشگاه تهران، ایران

3 استاد قطب علمی کنترل و پردازش هوشمند، دانشکدۀ مهندسی برق و کامپیوتر، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران

چکیده

مسأله­ای که در دو دهه­ی اخیرِ مطالعات عصب­شناختی زبان بسیار به آن پرداخته شده­است، چگونگی پردازش واژه­ها در مغز و تفاوت­های آن با پردازش واژه­های ناآشناست. فرآیند دسترسی واژگانی در پردازش شنیداری کلام در همان 200 هزارم ثانیه­ی ابتدایی پس از شروع واژه، در مغز آغاز می­شود. اینکه در کجای این مسیر راه واژه­­ها، شبه‌واژه­ها و ناواژه­ها از هم جدا می‌شود، پرسشی است که سعی در پاسخ­گویی به آن برای فارسی­زبانان داشته­ایم تا به چگونگی فرآیند تشخیص واژه‌ها، پردازش آنها نسبت به دیگر زنجیره‌های آوایی، و نقض قواعد واج‌آرایی پی ببریم. حین یک آزمون تصمیم­گیری-واژگانی شنیداری، سه نوع محرک هم­ساخت (واژه، شبه‌واژه، ناواژه) در میان جملاتی با ساختار یکسان به شرکت­کننده­ها ارائه شد. فعالیت مغزی آنها در طول آزمون با استفاده از دستگاه الکتروانسفالوگرام یا ای­ای­جی (eeg)[1] ثبت شد. داده‌های پتانسیل‌های رخدادی[2]، ای­آرپی (ERP)، حاکی از آن بود که در نواحی پیشین مغز، در پردازش ناواژه‌ها اثر مؤلفه‌ی مثبت مؤخر (LPC) [3] مشاهده می‌شود که می‌تواند بازتابی از نقض قواعد واج‌آرایی زبان فارسی باشد. به‌علاوه، در نواحی آهیانه، اثر N400 برای ناواژه‌ها و شبه‌واژه‌ها مشهود بود که خبر از فعالیت بیشتر مغز در تلاش برای ایجاد هم‌بستگی معنایی دارد. همچنین، بررسی تأخیر مؤلفه‌ی N400 نشان داد که در نواحی آهیانه این اثر برای شبه‌واژه‌ها زودتر از دیگر محرک‌ها اتفاق می‌افتد. نتایج حاصل، در کنار شباهت‌هایی که با یافته‌های پژوهش‌های انجام‌شده در دیگر زبان‌ها دارد، تفاوت‌هایی را نیز نشان می‌دهد که بیشتر به جایگاه مؤلفه‌های مشاهده‌شده مربوط است.
 
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Auditory Processing of Farsi words, Pseudowords and Nonwords

نویسندگان [English]

  • Fahimeh Nasib Zarraby 1
  • Mahmoud BijanKhan 2
  • Hamid Soltanian-Zadeh 3
  • Ali Darzi 2

1 PhD Student in General Linguistics, Department of Linguistics, Faculty of Literature and Humanities, University of Tehran, Iran

2 Professor, Department of Linguistics, Faculty of Literature and Humanities, University of Tehran, Iran

3 Professor of Intelligent Control and Processing Scientific Center, Faculty of Electrical and Computer Engineering, Campus of Technical Schools, University of Tehran, Iran

چکیده [English]

During the recent two decades, the subject of processing well-formed and ill-formed words have been exploited in the literature for different languages and different purposes. Lexical retrieval for auditory inputs has been proved to start as soon as 200 ms after the stimulus onset. However, the questions of when and how well-formed and ill-formed words change their processing paths have yet to be answered for Farsi speakers. In this study, Farsi speakers did a lexical decision task while their brain activity was being recorded by a 64 channel EEG. The stimuli included Farsi words, pseudowords and nonwords, which were very similar in structure and were consistent in terms of fundamental frequency, intensity and duration. The ERP data showed an LPC for nonwords in frontal regions, which is known to be an indicator of violating phonotactic constraints. In addition, nonwords and pseudowords showed almost equal N400 effects in parietal regions, which can reflect a more effortful semantic integration compared with words. Finally, the peak latency analysis revealed an earlier N400 peak for pseudowords as opposed to words and nonwords. The regions where N400 and LPC were identified differed from some studies in the literature.

کلیدواژه‌ها [English]

  • auditory
  • word processing
  • ERP
  • LPC
  • N400
  • phonotactic constraints
Baggio, G., & Hagoort, P. (2011). The balance between memory and unification in semantics: A dynamic account of the N400. Language and Cognitive Processes26(9), 1338-1367.
Boersma, P., & Weenink, D. (2019). Praat (Version 6.1) [Computer software]. Retrieved from http://www.praat.org/
Caramazza, A., & Zurif, E. B. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia. Brain and language3(4), 572-582.
Daltrozzo, J., & Conway, C. M. (2014). Neurocognitive mechanisms of statistical-sequential learning: what do event-related potentials tell us? Frontiers in human neuroscience, 8, 437.
Delogu, F., Brouwer, H., & Crocker, M. W. (2019). Event-related potentials index lexical retrieval (N400) and integration (P600) during language comprehension. Brain and cognition, 135, 103-569.
Domahs, U., Kehrein, W., Knaus, J., Wiese, R., & Schlesewsky, M. (2009). Event-related potentials reflecting the processing of phonological constraint violations. Language and Speech52(4), 415-435.
Hagoort, P. (2016). MUC (Memory, Unification, Control): A model on the neurobiology of language beyond single word processing.  Neurobiology of language (pp. 339-347). Academic Press.
Holcomb, Ph. J., Grainger, J., & O'rourke, T. (2002). An electrophysiological study of the effects of orthographic neighborhood size on printed word perception. Journal of Cognitive Neuroscience14(6), 938-950.
Key, A. P. (2016). Human Auditory Processing: Insights from Cortical Event-related Potentials. AIMS Neuroscience3(2), 141-162.
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual review of psychology, 62, 621-647.
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic incongruity. Science, 207(4427), 203-205.
Menenti, L., Gierhan, S. M., Segaert, K., & Hagoort, P. (2011). Shared language: overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychological science22(9), 1173-1182.
Moore-Cantwell, C., Pater, J., Staubs, R., Zobel, B., & Sanders, L. (2018). Event-related potential evidence of abstract phonological learning in the laboratory. Unpublished ms., University of Massachusetts. {PDF} Retrieved from http://www. clairemoorecantwell.org/phonolearn/moore-cantwell-et-al-2018-ERP-ALL. pdf.
Nieuwland, M., S., Barr, Dale J., Bartolozzi, F., Busch-Moreno, S., Darley, E., Donaldson, D. I., Ferguson, H. J., et al. (2020). Dissociable effects of prediction and integration during language comprehension: Evidence from a large-scale study using brain potentials. Philosophical Transactions of the Royal Society B375(1791). doi: 10.1098/rstb.2018.0522.
Nooteboom, Sieb (1997). The prosody of speech: melody and rhythm. The handbook of phonetic sciences, 5, 640-673.
Obrig, H., Mock, J., Stephan, F., Richter, M., Vignotto, M., & Rossi, S. (2017). Impact of associative word learning on phonotactic processing in 6-month-old infants: A combined EEG and fNIRS study. Developmental cognitive neuroscience, 25, 185-197.
Paiva, T., Almeida, P., Ferreira-Santos, F., Vieira, J., Silveira, C., Chaves, P., Barbosa, F., & Marques-Teixeira, J. (2016). Similar sound intensity dependence of the N1 and P2 components of the auditory ERP: Averaged and single trial evidence. Clinical Neurophysiology, 127(1), 499-508.
Rogers, T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J., Hodges, J., & Patterson, K. (2004). Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychological review, 111(1), 205.
Rossi, S., Jürgenson, Ina B., Hanulíková, A., Telkemeyer, S., Wartenburger, I. & Obrig, H. (2011). Implicit processing of phonotactic cues: evidence from electrophysiological and vascular responses. Journal of Cognitive Neuroscience23(7), 1752-1764.
Segaert, K., Menenti, L., Weber, K., Petersson, K., & Hagoort, P. (2012). Shared syntax in language production and language comprehension—an fMRI study. Cerebral Cortex22(7), 1662-1670.
Smolensky, P., & Prince, A. (1993). Optimality Theory: Constraint interaction in generative grammar. Massachusetts: MIT Press.
Steber, S. & Rossi, S. (2020). So young, yet so mature? Electrophysiological and vascular correlates of phonotactic processing in 18-month-olds. Developmental cognitive neuroscience, 43, 100-784.
Weiss, Y., & Booth, J. R. (2017). Neural correlates of the lexicality effect in children. Brain and language, 175, 64-70.
Ylinen, S., Huuskonen, M., Mikkola, K., Saure, E., Sinkkonen, T., & Paavilainen, P., (2016). Predictive coding of phonological rules in auditory cortex: A mismatch negativity study. Brain and language, 162, 72-80.
Zunini, R.A. L., Baart, M., Samuel, A. G., & Armstrong, B. C. (2020). Lexical access versus lexical decision processes for auditory, visual, and audiovisual items: Insights from behavioral and neural measures. Neuropsychologia, 137, 107-305.
CAPTCHA Image