استعاره‌های مفهومی هوش مصنوعی در رسانه‌های خبری فارسی‌زبان: تحلیل بافتی-شناختی بر اساس نظریۀ گسترش‌یافتۀ استعارۀ مفهومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه زبانشناسی، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 استاد زبان‏شناسی، دانشکده ادبیات و علوم‏‏ انسانی، دانشگاه فردوسی مشهد، مشهد، ایران.

چکیده

این تحقیق به بررسی استعاره‌های به‌کاررفته در متون خبری دیجیتال فارسی‌زبان برای مفهوم‌سازی هوش مصنوعی پرداخت.  پیکره‌ای کوچک از متون خبری منتشرشده در سه رسانۀ طی ده سال گذشته ساخته شد. منابع و متون پیکره بر اساس تناسب با اهداف تحقیق و معیار محبوبیت انتخاب شد. سپس با رویۀ شناسایی استعاره، استعاره‌های هوش مصنوعی، استخراج و بر اساس نظریۀ گسترش‌یافتۀ استعارۀ مفهومی از نظر مبدأ استعاری، عوامل بافتی و فرآیندهای شناختی مورد تجزیه‌وتحلیل قرار گرفت. تحلیل کمی با استفاده از آمار توصیفی نیز انجام شد. نتایج، کشف فرآیندهای شناختی دخیل در شکل‌گیری استعاره شامل انقباض و انقیاد مفهومی، مجاز و تلفیق در سطوح مختلف طرح‌وارگی بود. همچنین، نقش پویای تعامل عوامل بافتی و فرآیندهای شناختی برجسته شد. دستاورد مهم دیگر، پیشنهاد فرضیۀ درهم‌تنیدگی بافتی-شناختی برای تبیین تعامل پویای عوامل بافتی و فرآیندهای شناختی در پیدایش استعاره‌های مفهومی بود. بررسی بیشتر این فرضیه با توجه به حجم کم نمونه و ماهیت کیفی این تحقیق، تکرار تحقیق با نمونۀ بزرگ‌تر و رویکرد کمی به تحقیقات آتی پیشنهاد گردید. پیشنهاد توجه به عوامل بافتی و مفهوم‌سازی در کاربرد زبان برای حوزه‌های سیاست‌گذاری علم و فناوری، خبرنگاری و نگارش متون فنی پیشنهاد گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Artificial Intelligence through the Cognitive Linguistics Lens: An Analysis of Persian Digital News Texts based on Extended Conceptual Metaphor Theory

نویسندگان [English]

  • Toomaj Hemmati 1
  • Mohammad Reza Pahlavannezhad 2
1 PhD Candidate of Linguistics, Ferdowsi University of Mashhad, Mashhad, Iran.
2 Professor of Linguistics, Ferdowsi University of Mashhad, Mashhad, Iran.
چکیده [English]

The purpose of this study was to study the conceptualizations of artificial intelligence based on Extended Conceptual Metaphor Theory (ECMT) in a small corpus of news texts published in Persian digital media. To this end, three digital news outlets of the past ten years were selected considering the research goals and popularity criteria. One news text was selected for each year. Next, artificial intelligence conceptualizations were systematically extracted following the Metaphor Identification Procedure (MIP). The data were qualitatively analyzed based on the theoretical framework for source domains, cognitive processes, and interacting contextual factors. Source domains were quantitatively analyzed using frequency and frequency percentages. The findings revealed that cognitive processes are involved in the emergence of the metaphors including conceptual compression and restriction, metonymy and blending at various levels of schematic hierarchy. This study highlighted the role of the dynamic interaction between context and cognitive processes. It also proposed the contextual-conceptual entanglement hypothesis to explain and study the role of the reciprocal interaction of different contextual factors and cognitive processes throughout the emergence of conceptual metaphors. Given the small sample size and qualitative nature of the study, further investigation of the proposed hypothesis, replication of this study with larger samples adopting quantitative approaches were suggested for future research. Moreover, more attention to contextual factors and conceptualizations in language use for science and technology policy-making, journalism and technical writing was suggested.

کلیدواژه‌ها [English]

  • Artificial Intelligence
  • Cognitive Linguistics
  • Conceptual Metaphor
 
Bender, E. M., & Friedman, B. (2018). Data statements for natural language processing: Toward mitigating system bias and enabling better science. Transactions of the Association for Computational Linguistics, 6, 587–604. https://doi.org/10.1162/tacl_a_00041
Bender, E. M., & Hanna, A. (2025). The AI con.
Boulenger, V., Hauk, O., & Pulvermüller, F. (2009). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19(8), 1905-1914.
Evans, V. (2019). Cognitive Linguistics: A Complete Guide. Edinburgh University Press.
Faraj, S., Renno, W., & Bhardwaj, A. (2021). Unto the Breach: What the COVID-19 Pandemic Exposes about Digitalization. Information and Organization, 31(1), 1-7.
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4), 455-479.
Hicke, R. M. M., & Kristensen‑McLachlan, R. D. (2024). Science is exploration: computational frontiers for conceptual metaphor theory. Preprint archive.
Hockett, J. (2019). Metaphors we compute by: The conceptual framing of artificial intelligence in news discourse. Metaphor and Symbol, 34(3), 195‑213.
https://doi.org/10.1080/10926488.2019.1657572
Jalili, F., & Nouri, A. (2023). Social Media Discourses on AI in Iran: The Role of Metaphors. Media and Communication Studies, 32(1), 129-145.
Karimi, A., Hosseini, M., & Pourshahian, M. (2024). Operationalizing Extended Conceptual Metaphor Theory in Persian media metaphor analysis. Journal of Cognitive Linguistics Studies, 12(1), 34–59.
Kazemian, R., & Hatamzadeh, S. (2022). COVID‑19 in English and Persian: A cognitive linguistic study of illness metaphors across languages. Metaphor & Symbol, 37(2), 152–170. https://doi.org/10.1080/10926488.2021.1994839
Khadpe, S., Liao, Q., & Sundar, S. S. (2020). How metaphor influences the adoption of AI: Effect of metaphor on perceived AI agent traits. Journal of Human–Computer Interaction, 36(8), 731‑749.
Kövecses, Zoltán, Where Metaphors Come From: Reconsidering Context in Metaphor (New York, 2015; online edn, Oxford Academic, 22 Jan. 2015), https://doi.org/10.1093/acprof:oso/9780190224868.001.0001, accessed 7 Oct.
Kövecses, Z. (2020). Extended Conceptual Metaphor Theory. [Framework guiding current study].
Kramer, O. (2025). Conceptual Metaphor Theory as a prompting paradigm for large language models. arXiv preprint.
Lakoff, G., & Johnson, M. (1980). Metaphors we live by. University of Chicago Press.
Langacker, R. W. (2008). Cognitive grammar: A basic introduction. Oxford University Press.
Lim, E. M. (2023). Metaphor analysis on pre‑service early childhood teachers’ conception of AI. Thinking Skills and Creativity, 51, Article 101455. https://doi.org/10.1016/j.tsc.2023.101455
Luo, W., He, H., Liu, J., Berson, I. R., Berson, M. J., & Zhou, Y. (2024). Aladdin’s genie or Pandora’s box? AI metaphors in early childhood education. Early Education and Development, 35, 96–113. https://doi.org/10.1080/10409289.2023.2214181
Martínez, A., & Fernández, R. (2022). AI Metaphors in Digital Media: A Comparative Analysis. Technology and Communication, 29(4), 201-223.
Mohammadi, A., & Azimi, H. (2022). Representativeness and selection criteria of Persian news corpora for cognitive linguistic research. Media and Language Studies Quarterly, 9(3), 101–119.
Moradi, S., & Hosseini, F. (2023). Identification of metaphorical expressions in Persian digital media: A corpus-based approach. Iranian Journal of Linguistics, 15(2), 45–67.
Nascimento, A. M., Andrade, J., & de Castro Rodrigues, A. (2023). The psychological impact of restorative justice practices on victims of crimes—A systematic review. Trauma, Violence, & Abuse, 24 (3), 1929–1947. https:// https://doi.org/10.1177/15248380221082085.
Parsāzadeh, S., & Torkashvand, N. (2022). Rhetoric or cognition: Toward a cognitive metaphor theory in Persian discourse. Journal of Applied Linguistics, 8(2), 123–145.
Pokojná, M., Olinska, E., & Schneider, B. (2024). Mapping metaphor: Complexity and creativity in technology discourse. Journal of Cognitive Science, 20(1), 45–66.
Ramezani, B. (2023). Understanding AI in Iran: Public Perception and Media Representation. Technology and Society Quarterly, 11(4), 66-85.
Reuters Institute. (2024). Digital News Report 2024. Retrieved from
 https://reutersinstitute.politics.ox.ac.uk/digital-news-report/2024
Roe, J., Furze, L., & Perkins, M. (2024). Funhouse mirror or echo chamber? A methodological approach to teaching critical AI literacy through metaphors. Early Education and Development, 35, 96–113.
Summerfield, C. (2025). These Strange New Minds: How AI Learned to Talk and What It Means. Viking: New York.
Taheri, B. (2021). Corpus linguistics methods in Persian metaphor studies: Challenges and prospects. Linguistic Research Reports, 5(2), 50–74.
Taheri, B., & Pourshahian, M. (2020). Validity and reliability in metaphor identification: Application in Persian political texts. Journal of Applied Linguistics, 7(1), 89–107.
The Pragglejaz Group, (2007). MIP: A Method for Identifying Metaphorically used Words in Discourse. Metaphor and Symbol: 22(1), 1 – 39. DOI:10.1207/s15327868ms2201_1.
Topol E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Natural Medicine. 25(1):44-56. doi: 10.1038/s41591-018-0300-7. Epub 2019 Jan 7. PMID: 30617339.
Vu, N. (2023). Conceptual metaphors of artificial intelligence and AI development in The Guardian newspaper. VNU Journal of Foreign Studies. jfs.ulis.vnu.edu.vn.
Yang, J., Shu, H., Bi, Y., Liu, Y., Wang, X., & Zevin, J. D. (2013). Dissociation between cortical representations of literal and figurative language: Evidence from functional magnetic resonance imaging. Neuroimage, 69, 420-428.
 
CAPTCHA Image