A Semantic Study of the -e Suffix in Farsi

Abbas Ali Ahangar
Associate professor of linguistics, Sistan and Baluchestan University, Zahedan, Iran

Ebrahim Morady
Ph.D. Candidate of Linguistics, Sistan and Baluchestan University, Zahedan, Iran

Received: 10 June 2015 Accepted: 3 May 2016

Extended Abstract

1. Introduction

Researchers used to think affixes are meaningless or their meaning is undetermined, or they obtain meaning by joining other lexical elements (Keshani, 1993; Shari’t, 1372). But today linguists know affixes have semantic parts in the language system.

2. Theoretical Framework

Each lexical semantic representation is composed of two parts: a Semantic/Grammatical Skeleton and a Semantic/Pragmatic Body. Each skeleton contains one/more semantic features (show the semantic role of the lexical item) and one/more arguments. In derivation and compounding the arguments are tied together via the Co-indexation Principle (Lieber, 2004).

Lieber (2004, 2009) proposes the semantic features [Material], [Dynamic], [IEPS] (Inferable Eventual Position or State), [Location], [Bound] and [CI] (Composed of Individuals) and [Scalar].

[+/- material]: The presence of this feature defines the conceptual category of substances/things/essences, the notional correspondent of the syntactic category Noun. The positive value denotes the presence of materiality, characterizing concrete nouns. Correspondingly, the negative value denotes the absence of materiality; it defines abstract nouns.

[+/- dynamic]: The presence of this feature signals an eventive/situational meaning, and by itself signals the conceptual category of situations. The positive value corresponds to an event or process, the negative value to a state (Lieber, 2004).

The semantic body contains at least two layers. The first one is relatively systematic, consisting of those universal semantic features being syntactically inactive. This layer of meaning is relatively stable from speaker to speaker. The second layer of meaning is purely encyclopedic, consisting of assorted bits of information: color, precise shape contours, and so on (Lieber, 2009). The skeletons and bodies of author and bed are shown in (1) and (2) respectively.

1 Corresponding Author: Ahangar@english.usb.ac.ir
(1) author Skeleton: [+material, dynamic ([], [])]
 Body: (First layer) < +animate>, < +human>, <function>
 (Second layer) {writes for publication, . . . }
(2) bed Skeleton: [+material ([])]
 Body: (First layer) < -animate>, < +artefact>, <3dimension>, <horizontal>, <function>
 (Second layer) {for sleeping, contains comfortable surface, . . . }

According to the Co-indexation Principle in a configuration in which semantic skeletons are composed, co-index is the highest non-head argument with the highest (preferably un-indexed) head argument. Indexing must be consistent with semantic conditions on the head argument, if any. In the case of a headless structure, co-index is semantically compatible with arguments (Lieber, 2009).

3. Methodology

This paper takes an analytical approach to study the -e Suffix in Farsi. The data gathered from modern written form Persian and have been analyzed based the framework presented in Lieber (2004).

4. Results and Discussion

The most productive role of -e is to make concrete nouns, carrying patient meaning, by attaching transitive verbs. (3) is the -e skeleton, (4) is ferestadan (to send) skeleton and (5) is the derived item skeleton, ferestade (sendee).

(3) -e [+material, dynamic ([nonvolitional] <base>)]
(4) ferestadan [+dynamic ([], [])]
(5) ferestade [+material, dynamic ([, nonvolitional], [+dynamic ([], [])])]
 -e ferestadan

Given the Co-indexation Principle, the highest base argument is co-indexed with the highest affix argument, provided that the requirement of the affix argument to co-index is regarded. The requirement of the affix argument is non-volitionality; it means that the affix argument is co-indexed with a non-volitional base argument. The internal argument of ferestadan is non-volitional; so the two arguments are co-indexed. The patient reading of the derived item is the outcome of the co-indexation of affix argument with the internal argument of ferestadan. It is not the semantic contribution of -e.

Sometimes the attachment of -e to the verbal base leads to an instrumental reading (gire (clip), pooshe (file)). (6) is gereftan (to hold) skeleton and (7) is that of gire, which is the result of joining -e to the present stem of gereftan.

(6) gereftan [+dynamic ([], [])]
(7) gire [+material, dynamic ([i, nonvolitional], [+dynamic ([i], [])])]
 -e gereftan

Based on the Co-indexation Principle, the highest arguments of the stem and the affix are joined provided that the requirement of the affix argument is considered.
Since the external stem argument in such a context is non-volitional, it gets co-indexed with the affix argument and the outcome is a derived item with instrumental reading. Then the agent/instrumental reading of the derived item is not originated from the semantic contribution of the affix but the application of the Co-indexation Principle.

The suffix -e attaches to past stem and sometimes to present stem (xaze) of intransitive verbs like mordan (to die) with the skeleton in (8) creating a derived noun with agent reading. (9) is morde (dead) skeleton.

(8) mordan \([+\text{dynamic} (\[]\])\]
(9) morde \([+\text{material, dynamic} (\{, \text{nonvolitional}\}, [+\text{dynamic} (\[]\)])] \]
\[-e \quad \text{mordan}\]

Morde is a person who has done the activity of mordan; but the sole argument of the predicate has not done the activity willingly and volitionally. Hence this argument is compatible with the requirement of the affix argument; it is co-indexed with it. The general interpretation of the derived noun is a non-volitional agent.

The suffix -e is also attached to noun stems and derives a noun with the “similarity to the stem” reading. (10) is pa (foot) skeleton and (11) is the derived noun paye (leg) skeleton.

(10) pa \([+\text{material} (\[]\], [])]\]
(11) paye \([+\text{material, dynamic} (\{, \text{nonvolitional}\}, [+\text{material} (\[]\], [])])\]
\[-e \quad \text{mordan}\]

The second argument of pa (its owner) is volitional and inappropriate to be co-indexed with the affix argument. Then the affix argument is co-indexed with the first argument of pa and leads to deriving an item, meaning similar to pa which has the semantic features [+material] and [+dynamic]. What is the origin of the similarity reading?

Whenever a language, in the real world, needs a lexical item but she doesn’t have any derivational means to create such a word either some sort of roundabout process (e.g., conversion) is employed, or the semantically closest productive affix is put to use, even if it requires a violation of the Co-indexation Principle in the process (Lieber, 2004, pp.73-74). Farsi does not have an affix to create the conception of similarity in words like paye and cheshme (spring); hence one of the most productive affixes is used. The question is why is not an affix like -i utilized? For us the reason is the non-volitionality requirement of the affix argument. There is a close relationship between similarity and non-volitionality.

In sefide (adjective + -e), sefid has a skeleton like (12). (13) is the skeleton of sefide.

(12) sefid \([-\text{dynamic} (\[]\])\]
(13) sefide \([+\text{material, dynamic} (\{, \text{nonvolitional}\}, [-\text{dynamic} (\[]\)])\]
\[-e \quad \text{sefid}\]

The affix argument, regarding its requirement, is co-indexed with the sole argument of sefid that is non-volitional. Since the affix with [+material] and [+dynamic]
features is the derived word head, the outcome of the derivation is a concrete process noun. The suffix -e also joins the present stem of transitive verbs and derives nouns bearing abstract and process reading but lacking agent, patient or instrument interpretation (xande, larze, gerye). The suffix -e participates in deriving such nouns with a different skeleton (14). (15) is xandidan (to laugh) skeleton combined with (14) and derived xande (16).

(14) -e [-material, dynamic ([], <base>)]
(15) xandidan [+dynamic ([])]
(16) xandede [-material, dynamic ([i:involitional], [[+dynamic ([i,])]])]
 xandidan

Since each element has just one argument, the only option is co-indexing these two. The outcome is an abstract noun bearing process reading; since the head has [-material] feature and both head and non-head elements have [dynamic].

A noun skeleton like bahār (spring season) (17), combines with the adjective maker -e (18) and results in deriving an adjective like (19).

(17) bahār [-material ([])]
(18) -e [-material, -dynamic ([], <base>)]
(19) bahāre [-material, -dynamic ([i,], [[-material ([i,])]])]
 bahār

The “-ae affix is not the residue of -ae in Old Persian; but it is the residue of -æk in Middle Persian that itself is descendant of -əkæ in Old Persian (Khanlari, 1995). For us the definite maker -e origin is -ækæ. Hence, -e has at least two different origins.

5. Conclusion

The -e has three skeletons: one deriving concrete nouns; but sometimes as a result of differently applying co-indexation principle and meaning extension it leads to coinage of nouns with patient, agent, instrument and stem-like readings. One that derives abstract nouns; the third one derives adjective. The suffix -e has diachronically two origins: the first one is the -e itself and the other is definite maker affix -ækæ changed into -e. This definite maker affix is the source of diminution, perjoration and endearment.

Key words: Lieber’s semantic theory, Semantic feature, Co-indexation principle, Farsi language, -e suffix

References (in Persian)

References (in English)